Biotin-PEG(4)-SS-Tyramide

Chemischer Name: N-(2-((3-(4-hydroxyphenethylamino)-3-oxopropyl)disulfanyl)ethyl)-1-(5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)-3,6,9,12-tetraoxapentadecan-15-amide // Synonyme: cleavable Biotin-PEG(4)-Tyramide linker

  • Art-Nr.:LS-3930
  • Lagertemperatur:-20°C
  • Formel:C34H55N5O9S3
  • Molare Masse:774,02 g/mol

Ab 350,00 €

Gruppiert Produkte - Artikel
Anzahl Verpackungsgröße Preis SKU Warenverfügbarkeit
50 mg
350,00 €
LS-3930.0050
<10 Arbeitstage
100 mg
650,00 €
LS-3930.0100
Auf Anfrage
Sicherheitsdatenblätter
description

Reagent for tyramide signal amplification used in many applications including immunohistochemistry, in situ hybridization, electron microscopy, ELISA, and others. It can be used together with both chromogenic and fluorescence visualization methods. It can be added to any other standard IHC protocol and reduces the use of other reagents; improves signal l to noise by reducing the titer of a other reagents in the assay protocol and enables multi-target detection in both IHC and (F)ISH applications.

The PEGylation in Biotin-PEG(4)-SS-Tyramide makes this biotin-phenol membrane-impermeant and restricts labeling to the cell surface. Label-Free Quantitation (LFQ) mass spectrometry combined with ratiometric HRP tagging of membrane vs. synaptic surface proteins can identify the proteomic content of excitatory clefts.


references

Mapping the Proteome of the Synaptic Cleft through Proximity Labeling Reveals New Cleft Proteins; T. Cijsouw, A. Ramsey, T. Lam, B. Carbone, T. Blanpied and T. Biederer; 2018; 6: 48. https://www.mdpi.com/2227-7382/6/4/48

Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation; V. Hung, S. S. Lam, N. D. Udeshi, T. Svinkina, G. Guzman, V. K. Mootha, S. A. Carr and A. Y. Ting; Elife D. Pagliarini 2017; 6: e24463. https://doi.org/10.7554/eLife.24463

In Situ Peroxidase Labeling and Mass-Spectrometry Connects Alpha-Synuclein Directly to Endocytic Trafficking and mRNA Metabolism in Neurons; C. Y. Chung, V. Khurana, S. Yi, N. Sahni, K. H. Loh, P. K. Auluck, V. Baru, N. D. Udeshi, Y. Freyzon, S. A. Carr, D. E. Hill, M. Vidal, A. Y. Ting and S. Lindquist; Cell Syst 2017; 4: 242-250 e4. https://doi.org/10.1016/j.cels.2017.01.002

Identification of Microprotein-Protein Interactions via APEX Tagging; Q. Chu, A. Rathore, J. K. Diedrich, C. J. Donaldson, J. R. Yates, 3rd and A. Saghatelian; Biochemistry 2017; 56: 3299-3306. https://doi.org/10.1021/acs.biochem.7b00265

Proximity-dependent labeling methods for proteomic profiling in living cells; C. L. Chen and N. Perrimon; Wiley Interdiscip Rev Dev Biol 2017; 6: e272. https://doi.org/10.1002/wdev.272

Proteomic Analysis of Unbounded Cellular Compartments: Synaptic Clefts; K. H. Loh, P. S. Stawski, A. S. Draycott, N. D. Udeshi, E. K. Lehrman, D. K. Wilton, T. Svinkina, T. J. Deerinck, M. H. Ellisman, B. Stevens, S. A. Carr and A. Y. Ting; Cell 2016; 166: 1295-1307 e21. https://doi.org/10.1016/j.cell.2016.07.041

Directed evolution of APEX2 for electron microscopy and proximity labeling; S. S. Lam, J. D. Martell, K. J. Kamer, T. J. Deerinck, M. H. Ellisman, V. K. Mootha and A. Y. Ting; Nat Methods 2015; 12: 51-4. https://doi.org/10.1038/nmeth.3179

New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay; X. W. Li, J. S. Rees, P. Xue, H. Zhang, S. W. Hamaia, B. Sanderson, P. E. Funk, R. W. Farndale, K. S. Lilley, S. Perrett and A. P. Jackson; J Biol Chem 2014; 289: 14434-47. https://doi.org/10.1074/jbc.M113.529578

Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging; H. W. Rhee, P. Zou, N. D. Udeshi, J. D. Martell, V. K. Mootha, S. A. Carr and A. Y. Ting; Science 2013; 339: 1328-1331. https://doi.org/10.1126/science.1230593

Tyramide signal amplification for analysis of kinase activity by intracellular flow cytometry; M. R. Clutter, G. C. Heffner, P. O. Krutzik, K. L. Sachen and G. P. Nolan; Cytometry A 2010; 77: 1020-31. https://doi.org/10.1002/cyto.a.20970

A. J. Gross and I. W. Sizer; J. Biol. Chem. 1959; 234: 1611.


Benötigen Sie weitere Informationen über dieses Produkt?

kontaktieren Sie uns

Schneller Kontakt

Bitte senden Sie mir mehr Informationen über

Produkte, die Sie auch interessieren könnten!