Welcome to Iris Biotech
For better service please confirm your country and language we detected.
For better service please confirm your country and language we detected.
Thank you very much for your interest in our products. All prices listed on our website are ex-works, Germany, and may attract customs duties when imported.
You may/will be contacted by the shipping company for additional documentation that may be required by the US Customs for clearance.
We offer you the convenience of buying through a local partner, Peptide Solutions LLC who can import the shipment as well as prepay the customs duties and brokerage on your behalf and provide the convenience of a domestic sale.
Continue to Iris Biotech GmbHSend request to US distributorPublished on 13.07.2021
The cyclic amino acid Proline (Pro) represents unique features in terms of its conformational properties as its incorporation into peptide sequences leads to an equilibrium mixture of approximately isoenergetic cis and trans conformers at AAA-Pro bonds, whereas peptide bonds of secondary amino acid amides adopt predominantly the trans Calpha/Calpha conformation.
As many biological cascades are driven by the cis-trans isomerization process of a peptidic ligand within its binding pocket, the analysis of the bioactive conformation – whether cis or trans – represents a versatile strategy to improve a drug’s affinity, its binding properties, and activity.
To analyze the role of both proline isomers separately, substituted proline derivatives can be inserted to lock the AAA-Pro peptide bond either in cis or trans. As reported in the literature, rigid bicylic 2,4-Methanoprolines adopt preferably the trans amide conformation and are thus behaving more like primary alpha-amino acids, whereas 5,5-Dimethylprolines (Dmp) lock the cis conformation. These findings suggest that both derivatives are useful Proline analogues for structure activity studies and the molecular design of peptide drugs, as the desired active conformation can be selectively stabilized.
Iris Biotech offers several Dimethyl- (3,3 and 5,5) as well as Methanoproline building blocks which can easily be incorporated by using standard peptide synthesis protocols. Interested? See the related products at the end of this page!
References:
Escaping from Flatland: Substituted Bridged Pyrrolidine Fragments with Inherent Three-Dimensional Character; B. Cox, V. Zdorichenko, P. B. Cox, K. I. Booker-Milburn, R. Paumier, L. D. Elliott, M. Robertson-Ralph, and G. Bloomfield; ACS Med. Chem. Lett. 2020; 11: 1185-1190. https://doi.org/10.1021/acsmedchemlett.0c00039.
A Peptidyl-Prolyl Model Study: How Does the Electronic Effect Influence the Amide Bond Conformation? P. K. Mykhailiuk, V. Kubyshkin, T. Bach, N. Budisa; J. Org. Chem. 2017; 82: 8831-8841. https://doi.org/10.1021/acs.joc.7b00803.
Bradykinin and angiotensin II analogs containing a conformationally constrained proline analog; P. Juvvadi, D. J. Dooley, C. C. Humblet, G. H. Lu, E. A. Lunney, R. L. Panek, R. Skeean, G. A. Marshall; Int. J. Peptide Protein Res. 1992; 40: 163-170. https://doi.org/10.1111/j.1399-3011.1992.tb00289.x.
Conformational Properties of 2,4-Methanoproline (2-Carboxy-2,4-methanopyrrolidine) in Peptides: Evidence for 2,4-Methanopyrrolidine Asymmetry Based on Solid-State X-ray Crystallography, 1H NMR in Aqueous Solution, and CNDO/2 Conformational Energy Calculations; S. Talluri, G. T. Montelione, G. van Duyne, L. Piela, J. Clardy, H. A. Scheraga; J. Am. Chem. Soc. 1987; 109: 4473-4477. https://doi.org/10.1021/ja00249a008.
Conformational Properties of 2,4-Methanoproline (2-Carboxy-2,4-methanopyrrolidine) in Peptides: Determination of Preferred Peptide Bond Conformation in Aqueous Solution by Proton Overhauser Measurements; G. T. Montelione, P. Hughes, J. Clardy, H. A. Scheraga; J. Am. Chem. Soc. 1986; 108: 6765-6773. https://doi.org/10.1021/ja00281a051.
Potential Nicotinic Acetylcholine Receptor Ligands from 2,4-Metanoproline Derivatives; A. B. Patel, J. R. Malpass; J. Med. Chem. 2008; 51(21): 7005-7009. https://doi.org/10.1021/jm800537a.
Modification of 1-Substituents in the 2-Azabicyclo[2.1.1]hexane Ring System; Approach to Potential Nicotinic Acetylcholine Receptor Ligands from 2,4-Methanoproline Derivatives; J. R. Malpass, A. B. Patel, J. W. Davies, S. Y. Fulford; J. Org. Chem. 2008; 68(24): 9348-9355. https://doi.org/10.1021/jo035199n.
A convenient incorporation of conformationally constained 5,5-dimethylproline into the ribonuclease A 89-124 sequence by condensation of synthetic peptide fragments; V. Cerovský, E. Welker, H. A. Scheraga; J. Pept. Res. 2003; 61(3): 140-151. https://doi.org/10.1034/j.1399-3011.2003.00041.x.
5,5-Dimethylproline dipeptides: an acid-stable class of pseudoproline; B. J. van Lierop, W. R. Jackson, A. J. Robnson; Tetrahedron 2010; 66(29): 5357-5366. https://doi.org/10.1016/j.tet.2010.05.068.