-
Game Changer for Protein Modification: Discover oxidation-induced furan crosslinking and 5-hydroxy-1,5-dihydro-2H-pyrrol-2-ones ( 5HP2O s) as stable alternative to maleimides.
Read more...
-
What’s new? Don’t miss innovative building blocks and latest technologies – have a look at our new products flyer and discover our portfolio additions from January to June 2024!
Read more...
-
Have an additional ace up your sleeve for selective and efficient peptide modification, cyclization, and/or bioconjugation. Explore 2-cyanopyridines for click-like reactions. Get more information!
Read more...
-
The discovery of the Merrifield peptide synthesis paved the way for automated solid-phase peptide synthesis (SPPS) enabling fast and convenient simultaneous peptide synthesis.
Read more...
-
A heart of gold! Metals and ores - see here how their surfaces can be equipped with bifunctional organic linker molecules and thus be turned into modifiable biocompatible materials.
Read more...
-
Discover the cyanobenzothiazole (CBT) click reaction , a not (yet) so well-known biocompatible and bio-orthogonal mechanism faster than the famous azide-alkyne cycloaddition (CuAAC).
Read more...
-
Curious about our latest portfolio additions from January to June 2023? Discover our New Products Flyer and check out the summary of recent product highlights! Get in contact for more details!
Read more...
-
Discover our diazirine-substituted building blocks suitable for the analysis of protein-protein and RNA-protein interactions via proximity labeling upon photoactivation. Read on for more information!
Read more...
-
Our monofunctionalized dextrans are enriching the toolbox of polymer therapeutics – Dextrans benefit of excellent solubility, biocompatibility, biodegradability, and non-immunogenicity.
Read more...
-
The HaloTag®, SNAP-Tag® and CLIP-Tag TM represent versatile tools for the specific, covalent attachment of in principle any molecule of choice to a protein of interest. Discover our substrates!
Read more...
-
(Bi)functional dioxoborolane and disulfide-based self-immolative linkers – mode of action and application examples for the detection of H 2 O 2 , for prodrug design, and reversible peptide cyclization.
Read more...
-
Jensen et al. developed two methods that use poly-His sequences to direct the highly selective acylation of proteins, either at the N-terminus or at a specific Lys residue. Read on for more information.
Read more...
-
Herein, we present 2-Iminobiotin, a cyclic guanidino analogue of biotin with pH-dependent affinity for avidin, and compare it to biotin and desthiobiotin. Click here for more detailed information.
Read more...
-
Discover our selection of substrates for Halo-, Snap-, and Clip-tagged proteins bearing different terminal groups suitable for further functionalization, e.g. biotinylation and Click chemistry.
Read more...
-
Iris Biotech offers a variety of (functionalized) biotin and desthiobiotin reagents reactive towards certain functional groups. Discover our growing portfolio and latest additions.
Read more...
-
Amongst various somatostatin analogues, the pentacyclic heptapeptide TT-232 bears unique properties. Iris Biotech offers TT-232 as triacetate and trifluoroacetate salt, respectively, as well as conjugated to either biotin or the fluorophore indocyanine green.
Read more...
-
Placing Dde as one terminal group of a linker and a functional group prone for conjugation as the other or using Dde as the central connective portion of a linker, allows for the creation of new bifunctional linkers.
Read more...
-
Biotinylation of proteins and their purification via Streptavidin beads is a widely applied method.
Read more...
-
Proximity labeling of proteins with biotin-phenol (biotin-tyramide) and an engineered peroxidase enzyme (e.g. APEX = Engineered Ascorbate Peroxidase) is a pivotal tool for molecular biology.
Read more...
-
Methods for proteomic mapping of cellular organelles or subdomains that avoid the necessity of cell lysis and purification by targeting specific subcellular regions have several advantages.
Read more...
-
Mercapto-PEG-Acids are highly hydrophilic, non-antigenic, non-immunogenic and non-toxic.
Read more...
-
Azido and alkyne functions can cyclise by an intramolecular CuI or Cu0 catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC). This so-called Click Reaction, developed by K. Barry Sharpless and Morton Meldal, has meanwhile grown to a widely used type of reaction orthogonal to many other types of reactions in different kinds of applications.
Read more...
-
a) Catalyst-free Click Reaction
Cycloaddition reactions such as the [3+2] azide-alkyne and the [4+2] Diels-Alder reaction, are becoming common conjugation techniques. Applications range from imaging, drug design and development of sensors, thereby spanning the fields of chemical biology, material science, surface and polymer chemistry as well as many other fields.
Introduced in 2002, the copper-catalyzed variant of the azide-alkyne cycloaddition (CuAAC) reaction has found broad applicability in t...
Read more...
-
The azido group can be reduced to an amino function and hereby serve as masked amino group. It is of particular use if additional orthogonalities are needed. Azido is stable towards treatment with piperidine (Fmoc deprotection), Pd(0) (Alloc removal) and acidic treatmet (cleavage of Mtt, Trt or other acid sensitive groups). However, as it is a pseudohalogenide, care has to be taken during coupling steps, as HATU will cause high racemization. This can be avoided using collidine or other non-nucleophilic bas...
Read more...
-
Nanotechnology and nanobiotechnology using gold or silver particles, quantum dots or even magnetic particles are broadly diverse, rapidly expanding areas of study in medical diagnostics and therapeutics, sensoric and chemistry.
Read more...
-
Chlorotoxin is a chloride channel blocker which has been found in the venom of the Egyptian scorpionLeiurus quinquestriatus.
Read more...
-
Our new Biotin-SS-Tyramide linker is a valuable tool for peroxidase-promoted targeted protein biotinylation. By using peroxidase-tagged antibodies, proteins and protein clusters can be selectively biotinylated, and then isolated using streptavidin. The biotin tag can be subsequently removed using reducing agents (e.g. glutathione).
Read more...
-
The presence of catalytic copper, limits the in vivo application of the Click this reaction for several reasons.
We offer custom synthesis of Strained Cyclooctynes and Substituted 1,2,4,5- Tetrazines as building blocks for fast Click reactions in the absence of any catalyst.
Read more...
-
Benzotriazol activated carboxylic acids:
Fast reaction (within minutes) at room temperature with amines and other nucleophiles under addition of base (in both water and non- aqueous solvents).
Stable to racemization when coupling with nucleophiles.
High solubility in organic solvents like DMF and DCM.
Stable in water.
Read more...
-
Tyramine compounds are converted to highly reactive radicals by horseradish peroxidase in presence of H2O2 which preferentially react with surface exposed tyrosines. Biotin Tyramide and Biotin-PEG-Tyramide therefore are ideal reagents used for tyrosine-/protein-biotinylation.
Read more...
-
Building Blocks for the synthesis of 2,3-diaminobutanoic acid containing peptides or for Click reactions.
Read more...